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ABSTRACT

I The Ambrosetti-Prodi boundary value problem with an asymptotically linear

nonlinearity is considered. Under general conditions on the nonlinearity it

is. shown that there exist positive and negative solutions. In the case when

the domain is a ball in " and the nonlinearity Acrosses the first n

eigenvalues, corresponding to radial eigenfunctions, it is proved that there

are at least n + 1 radial solutions.
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SIGNIFICANCE AND EXPLANATION

Let S C RI be a bounded smooth domain. Let ) be the first

eigenvalue of -A on H (Q) and let * > 0 be a corresponding
0

eigenfunction. The Ambrosetti-Prodi problem

(1)t  -Au = f(x,u) + h(x) + tf 1(x) in Q, u = 0 on ,

where t e R, h e C(d), Jh I = 0, is studied. First it is proved that if

urn S+4f(x,s)/s < AI< urnS++ f(x,s)/s then problem (l)t has a large

positive and a large negative solution for t < 0 large. The interest in

this type of solution comes from the fact that they play a special role in the

existence of other solutions. This has been observed before for special

classes of problem (1)t by Lazer-McKenna, Solimini and Ambrosetti. If the

limit of f(x,s)/s at +- is larger than a higher eigenvalue, it is expected

that other solutions, besides the positive and negative ones, will appear.

Previous results of Hofer, Solimini and Ambrosetti indicate that this is the

$ case. They have been able to prove existence of up to six solutions. A

connection between the number of solutions and the number of eigenvalues which

are crossed has been proved to exist in the o.d.e. case by Lazer-McKenna.

Here the authors consider the case of a ball in RN and prove the existence

of many radial solutions. These solutions are characterized by the number of

their "nodal lines".

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report. lea
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REMARKS ON THE AI4DROSTTI-PRODI PROBLEM

D. G. Costa* and D. G. do Pigueiredot*

Let 0 C I be a bounded smooth domain. Let A1 < X2 ... C Xk 4 denote the

eigenvalues of -A on A with Dirichlet boundary condition and > 0 an eigenfunction

corresponding to AV We consider the Ambrosetti-Prodi problem

(M)t  -Au - f(x,u) + h(x) + t#,(x) in 0, u - 0 on 3n,

where h e c(), jh41 - 0, and f:flxR + R is a continuous function such that there exist

the limits

(2) lie = f+ uniformly for x e F, with
(3) f- < X < f+ f+ +A J"

We asumie without loss of generality that f(x,0) - 0.

:n Section 1 of the present paper we shall show that for t ( 0 sufficiently large

problem M t  possesses a large positive solution and a large negative solution. We

remark that for a special class of problems (1)t existence of a negative solution was

first observed by Lazer-McKenna (3]. Subsequently, Ambrosetti [I] and Solimini [5], again

for a special class of problems (I)t proved the existence of both a negative and a

positive solution for t < 0 sufficiently large. In 12], one of the authors proved

existence of a negative solution for a general class of Ambrosetti-Prodi probles5

including the superlinear case. At present we do not know whether a positive solution

exists in the case of nonlinearities f wbich grow more rapidly than linear.

In Section 2 we consider the case when f is a hall and f is a C1  function which

does not depend explicitely on n. Let us denote by jI < 12 < -. the eigenvalues

,Universidade de Brasilia (Brazil). Partially supported by CNPq/Brazil.

I e *Jniversidade de Brasilia (Brazil) and Guggenheim Fellow (1983).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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of -A acting on the radial functions of HI (A) (It is well-known that P1  A w1 ). e
0

assume there that the limits below exist and satisfy

(4) f_ lim V'(s) < P1 ' n 
< 

+
=  

i 's n+ln 1
s,- 8+44s

It is then proved that for t < 0 sufficiently large M t possesses a radial positive

solution Ut  and a radial negative solution ut . it is also proved that given any

c + 0 there exists a radial solution u of the equation in [1) t such that

u - c e aI(I) and u - Ut  has at least n *nodal lines". More precisely there are at
0

least n concentric spheres where the function u - vanishes.

In Section 3 we prore under the same assumptions of the previous section that problem

M t has at least n + I radial solutions for t < 0 sufficiently large. Here we use a

shooting argument in a manner similar to the -ork of Lazer-McKenna [4). In their paper

they treated a two-point boundary value problem, which is the o.d.e. analogue of ( t ,

with -Au replaced by -u". Our analysis would correspond in their case to looking for

solutions which are symmetric with respect to the middle point of the interval. Without

this assumption of symmetry they can actually obtain 2n solutions. We believe that this

is also true in the p.d.e. case because we are in fact crossing also a number of

eigenvalues that correspond to non-radial eigenfunctions. As a matter of fact we prove in

Section 4 that this is the case when N - 3. Finally we observe that in the case when 1

is a region between two concentric spheres there are at least 2n solutions for problem

(1)t, t < 0 large.

1. xxistence of large positive and negative solutions

In this section we let A CIF be an arbitrary bounded smooth domain. Let

I < X2 "... < Ak C ".. denote the eigenvalues of -6 on n with Dirichlet boundary

condition and #, > 0 an eigenfunction corresponding to A We consider the

Mabrosetti-Prodi problem

t Au - f(x,u) + h(x) + t+l(x) in A, u - 0 on an,

-2-



whoe eC(l) h 0, and f: lxlt R is a continuous function such thatwhere h e (0 adf

f(x,O) S 0 and there exist the limits

(2) limrf__ s) ft . uniformly for x e F, with

(3) f- < < 4+ , + A

We shaell show that for t < 0 sufficiently large problem (I)t possesses a large

positive solution and a large negative solution. To that end consider the related

problems

(M± -Av - f v + F(x,v+ao1 ) + h in SI, v - 0 on an, (a e a),

where FU(x,s) - f(x,s) - (f+ 8 - f -), so that

(4) lim F(xs) = 0 uniformly for x e 5.

Denote by S (a) the set of solutions of l) and let M t(a) = sup {Ivl :v e S+(a)).

±C
Lemma 1. lira M() -

lal+.  a

Proof. We shall consider only the case of M+ (a), the other case being entirely

similar. Any solution v e S +(a) is a solution of the equation v - K+ ((,v4G# 1 ) + h),

where K+: L2 (0) * L2 (0) is the resolvent operator K+ - (-&-f +)
-  

(which exists in view

of (3)). As it is well-known, K+ : C°(0) C1 6) is a bounded operator and, therefore,

any v e S4 (. ) satisfies

e i1 c+ E( ,v4.Q#l) + h ICo,

or yet, since one has by (4) that IE(x,s)I ( C}s c, for all x e, a e it, where

£> 0 can be chosen arbitrarily (and c. depends only on c),

IV + [ C V P + CI-t II  l cO + ,c C -+ lhl Co .l vie ( c4.+ Lt v 4 i, e co*i~ .c~4 tE

-Choosinq £ > 0 so that 1- c+ C > 1/2 one obtains

evEc ( 2 c+ clef 14 1e + 2c+(c +Ol

from which the claim follows readily. U

-3-



Theorem 1. Suppose that (2) and (3) hold. Then there exists to < 0 such that for all

t < t p (1)t has a positive solution Ut  and a negative solution Ut satisfying

0U

l m I- tI t  - -A -f' -O

t AI-f + 1 t+ -  
t -  

C

Proof. Let n > 0 be such that w + > 0 for all w satisfying

IWl 1 I, wI3n 0. By Lerma I there exists a 0 0 such that
+ C
Kt (a) aa for ll a ) a, that is,

(6) Ovl (i aC
1

for any solution v of (1)+, a) a o r any such v, in view of the choice of n and

the fact that Iv/al 1 • T, we have that

(7) U E v + a !- (
+  

) > 0.

So U is a positive solution of the problem

-Au f+(u-a#1 ) + E(x,u) + h + %X 101  in A, u - 0 on 3il.

for a • a, that is, U is a positive solution of (I)t for

t " a( 1-f) ( a ( -f to And, in view of (6) and (7), U/t satisfies the

inequality

U 1 1v C
t X 1f+ 1 t C +

Similarly, we prove the existence of a negative solution ut of (1)t for

t ( -a (l-f_) - t- satisfying
ol 0

t X1-f I -f

The proof Is complete by letting to  min {t ,t 0 and noticing that the chosen n > 0

can be taken arbitrarily mall.

2. The case when fl is a bell

We now let n be the unit ball 9 - DI(O) C VP and consider the Ambrosetti-Prodi

problem

-4-



M t  -Au - f(u) + h + t#1  in B, u 0 on ;B,

where h e C(B) is a given radial function with Jh*, = 0 and fst R+ R is a C
1

function satisfying f(O) - 0,

(9) lim f'(s) - f. < pit Un < lim f'(s) - f+ < n+1' n ) 1.

Here we are denoting by P= V 2 
< 

... the eigenvalues of -A acting on the

radial functions of H I(B), that is, the eigenvalues of the problem
0

(10) -u. - 2- tiu , 0 < r < 1, u'(0) = u(1) = 0.
r

As it is well-known, these eigenvalues are given by U-v 2 2 where the v 's are the

positive zeros of the Bessel function 3(NW2 )/2 ' and corresponding eigenfunctions are

given by *j(r)r 3(N-2)/2 ((N-2)/2 (vjr).

Theorem 2 Under assumption (9), there exists t1 < 0 such that for all t < t

problem () t has a radial positive solution Ut and a radial negative solution

ut satisfying (5).

Proof. In view of Theorem I there exists to < 0 such that for all t I t problem

(a) has a positive solution Ut  and a negative solution ut satisfying (5). It

remains to show that both Ut  and ut are radial functions for t 4 t sufficiently

large. Indeed, letting zt  3U /Ow denote any angular derivative of Ut, zt satisfies

-A t = f'(Ut)zt  in , s t =0 on aB. Therefore if we assume that at 1 0, z t  is an

eigonfunction of the above problem corresponding to the eigenvalue I - X j ( Ut )). But

then the fact that Us(x) + - for all x e B and the Lebesgue dominated convergence

theore imply that f'(U t  + f + in LPp ) 1, and hence that

I f (U)) xj (f+) A j/f+ as t + -, which is a contradiction. Similarly we

show that is a radial function for t (t 0  sufficiently large.

wwe make the change of (dependent) variables u - w + Ut to rewrite

problem (8) t as



-Aw - f(w+Ut ) - f(U ) in B, w - 0 on as,

or yet as

(11) t  -Aw - f+ w + g(w+Ut) g(Ut) in B, w 0 on 3B,

where g(s) E f(s) - f+s. Notice that, in view of (9), R + R is a C1  function

satisfying

(12) lim g'(s) - f - f+, lis g'(s) - 0.

On the other hand, given 0 4 e R,e let us define the function

-r 3 /Fr)
Sr - Ct-)2~, r - Xl.(N-2)/2 (/f+)

v( r) (N-2)/2 +

Then it is easy to see that v is a solution of the problem

(13) -av- f v in S, vc on 9B,

and, since vn < +< Vn+l by (9), v vanishes on the n concentric spheres

r- r v/ +f -+ .... n) in B.

Theorem 3 Suppose (9) holds and let 0 + c e a be given. Then there exists

t - t(c) < 0 such that for all t ( t problem

(14) -Au - f(u) + h + tj1  in B, u - c on 9B,t ,C

has a radial solution I with the property that Z - Ut vanishes on n concentric

spheres in B.

Proof. We want to find a radial solution w of (11)t, with the boundary condition

replaced by w - c on as, and such that w vanishes on n concentric spheres in B.

Since the function V has this latter property and its n zeros in (0,1) (as a function

of r) are all simple, it suffices to find a solution z of the problem

-At - f+z + g(z+v+Ut) q(Ut ) in 8, z - 0 on as,

with 12l 1 C, £ - i(0) sufficiently mall, for then 'T z + V + Ut is a solution of

4 -6-
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I'
(14) with the desired property that U - Ut - z + V vanishes on n concentric

t ,
spheres in B. (We point out that the same argument used in the proof of Theorem 2 shows

that the solutions cf (15) t are radial for t < 0 sufficiently large). So Lemma 2 below

concludes the proof.

Lemma 2. Given C > 0 there exists t - t(e) such that for all t 4 t problem 15) t

has a unique solution z satisfying IzI 0 4.

Proof. We observe that solving (15)t is equivalent to solving the operator equation

z - KG t(z) T t(z),

where K : L 2(B) 
+ H (B) is the resolvent operator K - (-A-f and G is the

o

Nemytskii operator associated with the function g(z+V(r)+Ut(r)) - g(Ut(r)). We also

observe that the regularity theory for elliptic equations implies that K maps LP(B)

continuously into W2 'P(B) and (12) implies that Gt maps LP(B) continuously into

itself, so that Tt maps LP(B) into W2 'p(B). Given the ball B_(0) in C0 (B), we
C

shall show that for t < 0 sufficiently large we have Tt(B (0)) C B (0) and Tt is a

contraction. Indeed, fixing p > N/2 and using the Sobolev imbedding theorem, we have

ITt(t) C9 < cITt()I w2,p - clxGt(t)l 2,p < const. I GtlzlLp

and IGt(z)I + 0 as t 4 - uniformly for z e B (0), since we can estimate

IG t(z)LP 4 8(t)lz + VI where 6(t) + 0 as t 4 - (In computing IGt(z)I LP  apply

the mean value theorem for the function g and use the Lebesgue dominated convergence

theorem, keeping in mind that z + v + * - pointwisely in B and that

g'(s) + 0 as s + 4.). Therefore, Tt(B_(0)) C B(0) for t < 0 sufficiently large.

Similarly, for arbitrary z,, z2 e B (0), we have the estimate

ITt(z I Tt(z I)IO 1 const. IG ) - Gt(z 2 )1 4 const. 6(t)1z 1 - z21 o
SL C

- where 6(t) + 0 as t.-, so that Tt i (0) + B_(0) is a contraction for t < 0

sufficiently large. The proof is complete.

-7-'!



Rtemark. it should be pointed out that we stated and proved Theorem 3 as a p.d.e. result,

ignoring for the time being its natural 1-dimensional character (i.e., search of radial

solutions in a ball). The reason for that is the fact that indeed, for an arbitrary

bounded smooth domain U, Theorem 3 has the following analogue which we now describe.

For given 0 + c e a, let vc denote the solution of the problem

-Av = f. v in 0, v = c on 30 (i.e., vc  (-A)(-A-f c). Suppose that for some

c , v = v_ satisfies the condition that Vv(x) 4 0 whenever v(x) - 0, that is, the

c
graph of v is transversal to nx(O} at the points of M x {01, where

M {X e nOv(x) - 0) is the "null manifold" of v. Let m be the r er of components

of M. Then, for t < 0 sufficiently large (and under hypotheses (9) -here exists a

solution u of the problem

-Au - f(u) + h + t# I in n, u - c on an,

such that u - Ut  has at least m "nodal lines", that is, the null manifold of u - Ut

has at least M components.

3. Existence of many solutions

In this section we consider again the case when U is the unit ball

B - 21(0) C a and prove under the same assumption (9) of the previous section that the

Ambrosetti-Prodi problem (8) t has at least n + I radial solutions for t < 0

sufficiently large. For that matter we shall use a shooting argument as in [5].

It should be rmarked that only from now on is that the one-dimensional character of

problem (W)t will play an important role in proving the existence of other solutions

besides Ut > 0 and ut < 0, when n ; 2 in (9).

So, we start by rewriting (8) t as

-u - U - f(u) + h + te 1, 0 < r ( 1, u'(0) = u(1) - 0,

which in turn, again through the change of dependent variables u(r) - w(r) + Ut (r), can

be rewritten as

-(17a) -w - w- f w + q(w+U t ) - g(Ut ) , 0 < r < 1,

(lat i1r +
t -8-
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(17b) wI() - W(1) " 0,

where we recall that g(s) E f(s) - f+s.

Lenma 3. The initial value problem

-W N-1 wl - f w + g(w+Ut(r)) - g(Ut(r)), 0 < r < 1, w(0) a, w'(0) - 0,r +t

has a unique solution w(r) = w(r;a) which is defined for 0 ( r ( I and depends

continuously on a e i.

Proof. Since - w" - -w' - (rN~I)w it can be seen that the initial value
r N-i tr

problem in question is equivalent to the following Volterra integral equation

r
w(r) - a + J K(r,a) F(a,w(O)fdo,

0

where F(0,s) S f+s + g(s + U (0)) - g(Ut(o)) and K(r,o) - r Since the

kernel K(r,a) is nice, the result follows from the standard theory of Volterra

equations. U

Theorem 4. Under assumption (9), there exists t2 < 0 such that for all t 4 t2 problem

(17) t has at least n distinct non-trivial solutions w0, wi, ..., wn I with the

property that wj(r) has exactly j simple zeros in the open interval (0,1) and

wj (0) < 0, j - 0, ..., n-i. (Therefore, for t 4 t2 problem (S)t has at least the

n + I distinct radial solutions Ut, wj + Ut, j - 0, ..., n-1.)

Proof. From Theorem 2 we already know 2 solutions for problem (17)t, namely w F 0

(corresponding to the positive solution Ut of (9)t) and w0 = ut - Ut < 0 (corresponding

to the negative solution ut of 8 )t), provided t ( t I* On the other hand, from Theorem

3 we have a solution V -V - Ut of equation (17a)t, for t 4 t, such that V(r) has

n simple zeros in the open interval (0,1) and V(0) < 0 (take - in (14) so that the
t,

-9-
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function v in (13) satisfies v(0) < 0). Therefore, in view of Leoma 3, we can use the

idea of Temma 2.3 in (4] to show that, for each 0 ( j < n, problem (17) t has a solution

w (r) with exactly j simple zeros in (0,1) and such that wj(O) < 0.

4. The case N 3

In the case that 9 is the unit ball B -B1(0) in R we are able to improve

Theorem 4 and obtain 2n radial solutions for the Ambrosetti-Prodi problem (M)t , t < 0

sufficiently large. Namely, we have

Theorem S. let N - 3 and suppose (9) holds. Then, for all t < 0 sufficiently large,

problem ( 1 7 )t has at least 2n-1 distinct non-trivial solutions wj, 0,...,n-, and

wj, j -.... n-1, with the property that wj and wj have exactly j simple zeros in

(0,1) and w1(0) < 0, ; (0) > 0. (Therefore, for t < 0 sufficiently large, problem

() t has at least the following 2n distinct radial solutions% Ut, wj + Ut , J - 0 ....

n-1, wj +ut , J - 1, ... , n-1.)

Proof. By making the change of variables v(r) - rw(r) and letting Vt(r) E rUt(r), we

transform (17) t into the problem

(18) t  -v" . f+ v + g(r,v+V t) - g(Vt), 0 < r < 1, v(0) - v(1) - 0,

where g(r,v) S rg(v/r). Notice that (9) (hence (12)) implies that g is continuous

on [0,1] x R (by defining ;(0,v) . (f+-f_)v ), g is of class C on (0,1) x R, gv is

continuous on 10,I] x (3\O) and satisfies lisa gv(r,v) - f- -f,

lim gv (r,v) - 0 uniformly for r e (0,1]. Therefore, problem 1181 t can be treated in a
V+4
similar manner as the problem in 14). it then follows that (18) t has solutions vi,

J - 0, ... , n-1, and vj, J - 1, ... , n-1, such that vj and have exactly

simple zeros in (0,1) and v,1(0) < 0, vj(0} > 0. Going back to our original

(dependent) variable we first claim that if v(r) is a solution of (18) t than w(r) -

v(r)/r is a solution of (17 )t . Indeed, the only non-obvious property to check is that

- -10-
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w(r) satisfies the boundary condition w'(O) f 0. For that we observe that any

solution v(r) of (18) t satisfies v"(0) - 0, so that using I'Hospital's rule we obtain

lim w'(r) - rw'(r)-v(r) l r v - r) - v"(O . 0.

r40 r+0 r2  2r 2

Consequently wj(r) - vjlr)/r and ( Cr) = v(r)/r are solutions of (171t with the

stated properties. U

Remark. We observe that in the case 1 is the region between two concentric spheres in

R N , say e < r < 1, we again obtain 2n radial solutions for the corresponding

Ambrosetti-Prodi problem. Indeed, we are led to the o.d.e. problem (17&)t,

w(c) - w(1) - 0, or yet, making the change of variable v(r) f r (N 1)/2 w(r), to the

self-adjoint problem

CN
-" + 2 v - f.. v + g~r,v+Vt ) - gr,vt), C < r < 1,) - vC,) - 0,

r
where CN = (N-1)(N-3)/4, and Vt(r) and g(r,v) are as before.

'1
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